• HaGeMaTiK

  • HaGeMaTiK

  • HaGeMaTiK

  • HaGeMaTiK

  • HaGeMaTiK

Jenis-Jenis Persamaan

Seringkali kita dihadapkan dengan berbagai persamaan (equation), namun hanya ada 3(tiga) jenis persamaan dalam matematika, yaitu: eksponensial, logaritma dan trigonometri. Pada hakikatnya persamaan-persamaan adalah dasar pengejawantahan dasar untuk menyelesaikan problem-problem dalam dunia modern mulai menghitung lintasan peluru sampai mengorbitkan satelit di antariksa.

Asal-usul

Persamaan eksponensial adalah menempatkan sesuatu yang tidak diketahui sebagai pangkat dari suatu bilangan tertentu. Persamaan 4x = 16, sebagai contoh, dapat langsung kita jawab x = 2 karena 42 = 16. Namun persamaan eksponensial tidak serta merta sesederhana contoh di atas. Contoh lain, 2,0356x = 6,89. Berapa besar x? Apakah x bilangan rasional atau bilangan irrasional?

Pertanyaan di atas dan sulitnya memperoleh hasilnya membuat muncul persamaan kedua, persamaan logaritma. Contoh: log 100 = 2 karena dasar 10 yang lazim juga ditulis dengan 10log 100 = 2. Logaritma dengan dasar 10 disebut dengan logaritma biasa. Perkalian dua bilangan adalah menjumlahkan pangkat, seperti: 23.22 = 25. Saat kita sulit melakukan perhitungan perkalian yang rumit, dibuahlah menjadi logaritma. Logaritma adalah cara mudah untuk menyelesaikan problem eksponensial.

Keterbatasan kedua persamaan di atas membuat muncul persamaan ketiga, persamaan trigonometri. Bayangkan sebuah segitiga siku-siku (sudut sebuah sisinya 90º) PQR dengan sudut pada sisi P besanya aº, maka:

Sin a = garis dihadapan sudut a (opposite)
garis terpanjang (hypotenuse)
Cos a = garis sisi dari sudut a (adjacent)
garis terpanjang (hypotenuse)
Tg a = garis dihadapan sudut a (opposite)
garis sisi dari sudut a (adjacent)

Misal, besar sudut a = 30 , maka sin a = ½ atau dapat dikatakan panjang garis dihadapan sudut a, panjangnya ½ dari garis terpanjang dari segitiga.

Masih ada 2 jenis persamaan lagi, yaitu:

Persamaan aljabarik, dimana peubah-peubah muncul dengan koefisien yang memenuhi operasi matematikal mendasar: jumlah, kurang, bagi dan kali. Dapat terjadi persamaan ini mempunyai koefisien bukan aljabarik seperti 2Л x².

Persamaan akar, yang menunjuk kepada peubah-peubah dalam bentuk radian, yang terkadang dapat digolongkan persamaan aljabarik.




sumber : http://www.mate-mati-kaku.com/asalAsalan/Jenis-JenisPersamaan.html


.

Sistem desimal

Penemuan sistem desimal yaitu menggunakan tanda koma (Indonesia) atau titik (Inggris) untuk memisahkan integer dari suatu bilangan dari bentuk pecahan (fraksional), menandai perubahan besar dalam melakukan suatu perhitungan. Bilangan pecahan terlalu rumit dan membingungkan dalam operasi penambahan dan pengurangan, dan dalam beberapa hal sulit untuk dilakukan perbandingan.
Dalam perkembangannya penulisan dengan menggunakan sistem desimal ini menjadi baku.
Contoh:
8.451,62 = 8.10³ + 4.10² + 5.101 + 1.10º + 6.10-1 + 2.10-2

Kisah
Bandingkan dan sebutkan mana yang lebih besar dari 21/74 dengan 143/523? Sulit untuk mengukurnya. Tetapi, bila dikonversi menjadi bentuk desimal – katakan 6 digit, maka kita langsung dapat mengatakan mana yang lebih besar, untuk 21/74 = 0,283784 sedangkan 143/523 = 0,273423. Lewat sistem desimal ini kita langsung dapat menunjukkan bahwa 21/74 lebih besar.
Sistem desimal mulai diperkenalkan pada Renaissance. Pada tahun 1492, Francesco Pellos (1450 – 1500) menerbitkan karyanya berjudul Compendio de lo abaco, termasuk di sini menggunakan tanda titik untuk menandai pecahan dengan bilangan dasar sepuluh (desimal).
Dasar bilangan ini perlu diperjelas karena bangsa Babylonia menggunakan pecahan bilangan dasar enam-puluh. Kita juga masih mengadopsi sistem ini pada jam dalam membagi menit dan detik. Praktik menggunakan bilangan dasar 60 diadopsi dari stardar yang dipakai dalam bidang astronomi dan dunia Barat menggunakan sistem ini pada jaman kegelapan (dark ages).




sumber : http://www.mate-mati-kaku.com/asalAsalan/Sistemdesimal.html


.

Kalkulus

Apa yang terjadi apabila tidak ditemukan kalkulus?. Kesulitan terus terjadi jika harus mengukur luas bentuk melengkung tidak beraturan seperti elips (geometri) atau menyederhanakan banyak perhitungan bahkan memprediksi banyak hukum fisika yang menyangkut ‘perubahan’ seperti gerak dan gelombang.
Kata kalkulus berasal dari bahasa Latin, calx yang artinya “batu”, aslinya dari bahasa Yunani, chalis (artinya tidak jauh dari kata chalk dalam bahasa Inggris yang berarti kapur tulis). Kalkulus berhubungan dengan menghitung infitisimal – sesuatu yang sangat kecil namun tidak sama dengan nol atau mendekati nol.

Kisah
Untuk menemukan kalkulus (integral dan diferensial), orang harus menguasai metode dalam geometri warisan Yunani dan Cavalieri, sekaligus memahami metode aljabar dari Descartes dan Wallis. Fermat memulai gagasan tentang kalkulus, namun belum sempat dikembangkan lebih jauh, karena keburu meninggal. Fermat menggunakan diferensial guna menyelesaikan peroblem menemukan maksima dan minima serta menggunakan integral untuk menghitung lusa lengkungan dan titik (pusat) gravitasi tanpa pernah mengetahui bahwa integral dan diferensial adalah operasi saling berbalik.
Tahun 1655 – 1666, sebenarnya Newton sudah menulis gagasan tentang kalkulus (fluxion), namun karena dianggap masih mentah tetap tidak pernah diungkapkan. Selain itu penemuan Newton tentang hukum gravitasi dan spektrum warna (optiks) membuat gagasan itu terlupakan. Tahun 1684, Leibniz menerbitkan buku tentang kalkulus. Newton tersentak – bahkan sempat timbul konflik diantara mereka berdua – namun baru menerbitkan karyanya pada tahun 1704, namun metode Leibniz ternyata terbukti lebih ampuh dibandingkan dengan metode Newton.
Kalkulus dikembangkan lebih lanjut oleh Jacob dan Johann Bernoulli disusul oleh l’Hopital sehingga makin lengkap. Kiprah Cauchy membuat timbulnya variasi-variasi kalkulus, sehingga dikenal 4(empat) jenis kalkulus, yaitu: diferensial kalkulus, integral kalkulus, persamaan-persamaan diferensial dan variasi-variasi kalkulus (mempelajari fungsi-fungsi maksima dan minima, dimana nilainya bergantung kepada kurva atau fungsi lain. Problem utama adalah menemukan fungsi guna memberikan asumsi integral yang mempunyai nilai maksima atau nilai minima).



sumber : http://www.mate-mati-kaku.com/asalAsalan/Kalkulus.html


.

Deret

Terdapat susunan bilangan:

…, 5, 8, 11, 14, 17, …

Susunan di atas dapat disebut deret atau urutan bilangan yang dapat didifinisikan sebagai himpunan bilangan-bilangan yang tersusun dalam keteraturan dengan pola tertentu, sehingga bilangan-bilangan di awal (sebelumnya) atau berikutnya dapat diprediksi.

Selisih urutan bilangan di atas adalah sama yaitu 3, sehingga dapat ditebak bahwa bilangan 2 terletak di sebelah kiri bilangan 5 dan bilangan 20 terletak di sebelah kanan bilangan 17.

Asal-usul
Bilangan yang berada dalam suatu derte disebut elemen; Andaikan n adalah bilangan ordinal dalam suatu deret, dan 1 adalah bilangan pertama dan an bilangan terakhir, maka jumlah bilangan dalam deret adalah:

Sn = a1 + a2 + a3 + …+ an.

Deret, selanjutnya, dapat ditulis 2, 5, 8, 11, (3n-1), …

Deret di atas disebut deret aritmatika dengan beda/selisih 3. Kebalikan dari deret artimatika adalah deret harmonik 1, ½, 1/3, ¼, … adalah kelabilan dari deret aritmatika 1, 2, 3, 4,…

Dikenal pula deret geometrik seperti 1, 2, 4, 8, 16,… dengan pokok bilangan sama, 2 dengan pangkat n.

Jumlah deret terbatas apabila bilangan awal dan bilangan akhir diketahui seperti:

2 + 5 + 8 + 11 + 14;
Dan dibedakan dengan jumlah deret tak terbatas seperti:

2 + 5 + 8 + 11 + 14 + …

Dalam perkembangannya deret mendapat perhatian banyak matematikawan. Euler, sebagai contoh, menggagas deret sebelum muncul bilangan alam (e), dan yang paling terkenal adalah Fourier yang untuk pertama kalinya mengemukakan deret trigonometri yang dikenal dengan nama Fourier series yang banyak diaplikasikan dalam bidang fisika.



sumber : http://www.mate-mati-kaku.com/asalAsalan/Deret.html


.

Seksadesimal

Judul di atas artinya bilangan dengan dasar enam puluh. Apabila desimal berarti sepuluh dipakai sebagai dasar perhitungan dalam kehidupan sehari-hari, maka bilangan dengan dasar enam puluh rasanya sulit diterapkan dalam kehidupan sehari-hari. Namun, nyatanya, setiap hari kita bergantung kepada sistem bilangan ini. Begitu kita membuat janji, maka terpaksa kita harus berurusan dengan sistem ini. Satu jam terdiri dari 60 menit dan 1 menit terdiri dari 60 detik mengacu pada sistem di atas. Hanya ini. Tidak. Jumlah sudut sebuah segitiga adalah 180° dan keliling lingkaran adalah 360° dipakai sebagai dasar perhitungan dalam kompas.

Asal-usul
Sistem bilangan berbasis enam puluh dipakai sejak dahulu oleh bangsa Babilonia atau Mesopotamia, dimana pada awalnya sistem ini digunakan untuk menggantikan sistem Sumeria - Akkadia yang sudah ada namun hanya dapat digunakan sebagai ukuran penempatan nilai relatif saja. Ide seksadesimal tidak jelas asal-mulanya, namun bukti-bukti arkeologis menunjuk sistem itu sudah ada sejak 2000 tahun SM., seiring dengan berdirinya kekaisaran Babilon.

Kelemahan seksadesimal – dibandingkan dengan desimal - adalah memerlukan lambang bilangan yang lebih banyak (59 lambang/notasi bilangan) yang tentunya lebih sulit untuk dihafalkan. Bangsa Babilon juga sudah mengenal bilangan pecahan seksadesimal dengan notasi bilangan yang berbeda pula.



sumber : http://www.mate-mati-kaku.com/asalAsalan/Seksadesimal.html


.

Problem empat warna

Apakah memungkinkan mewarnai peta dalam bidang dengan menggunakan (hanya) empat warna dimana daerah/sektor yang letaknya berdekatan atau berbatasan harus mempunyai warna berbeda?

Untuk menjawab pertanyaan sederhana ini ternyata memerlukan pergulatan panjang dan dalam krun waktu ratusan tahun – seperti Theorema Terakhir Fermat (TTF), sebelum akhirnya dipecahkan dengan bantuan komputer.

Asal-usul
Pada tahun 1852, Augustus De Morgan mengirim surat kepada Rowan Hamilton yang didalamnya sekilas disebutkan bahwa seorang mahasiswanya, Frederick Guthrie, bertanya tentang kemungkinan mewarnai peta hanya menggunakan empat warna saja. Ternyata upaya untuk memecahkan problem ini melibatkan pemikiran matematikawan ‘kuno’ seperti [Leonhard] Euler yang mencetuskan teori polihedron. Problem menjadi makin marak setelah dicoba dijawab oleh Cayley dengan hasil kurang memuaskan, sebelum menyeberang ke benua Amerika dibawa oleh Sylvester, rekan Cayley.

Di Eropa dan di Amerika, problem ini sama-sama berusaha dipecahkan. Meskipun lambat dan kurang mendapat perhatian seperti halnya TTF, namun tetap ada matematiwan yang terusik untuk memecahkannya. Titik terang mulai muncul pada tahun 1972, setelah terjadi kolaborasi antara Kenneth Appel dan Wolfgang Haken. Mereka berdua terus berusaha keras untuk membuktikan sampai diungkapakn hasil pembuktian pada tahun 1977 bersama dengan John Koch dan dipublikasikan pada Illinois Journal of Mathematics. Tahun-tahun berikutnya, para matematikawan (Thomas Tymoczko dan Ulrich Schmidt) memberi tanggapan bahwa pembuktian itu ternyata salah. Masih belum patah semangat, Appel dan Heken kembali memberikan tanggapan tentang pembuktian yang mereka lakukan pada tahun 1986 dan 1989.

Baru tahun 1994, Neil Robertson, Daniel Sanders, Paul Seymour dan Robin Thomas merombak semua pembuktian empat-warna. Mengikuti metode dari Appel dan Haken, mereka memberikan 633 konfigurasi yang tidak terbantahkan lagi dengan menggunakan bantuan komputer.



sumber : http://www.mate-mati-kaku.com/asalAsalan/Problem_empat_warna.html


.

Simbol perjumlahan (+) dan pengurangan (-)

Dalam setiap kalkulator pasti terdapat simbol-simbol + (plus), - (minus), : (titik dua), x (kali) dan = (sama dengan). Tidak perduli kalkulator di sebuah Kecamatan kecil atau di Tokyo (Jepang adalah pusat penghasil kalkulator) atau di New York, semua kalkulator mempunyai keempat tanda di atas.

Kategori

Simbol matematika dipilah menjadi 3 jenis:

- Simbol-simbol untuk bilangan-bilangan, kuantitas-kuantitas, peubah-peubah (variabel) atau obyek-obyek. Masuk kategori ini adalah simbol pada fungsi-fungsi trigonometri, pangkat, akar, logaritma atau simbol untuk menandai peubah.

- Simbol-simbol operasi yang menggambarkan operasi terhadap bilangan. Masuk kategori ini adalah: penambahan, pengurangan, pembagian, perkalian, dan simbol-simbol dalam himpunan, faktorial, integral dan diferensial.

- Simbol-simbol hubungan yang menggambarkan sesuatu ditetapkan. Simbol sama dengan +) dan ketidaksamaan (< dan >), nisbah (ratio).

Sejarah

Simbol + sudah dipakai oleh bangsa Yunani, sedangkan simbol – (minus) pertama kali dipakai oleh Luca Pacioli di Italia pada awal abad 15 dan abad 16. Sebelumnya, Diophantus dari Alexandria menggunakan simbol  untuk operasi pengurangan sebelum disingkat dengan M atau m singkatan dari minus atau meno yang artinya menghilangan satu atau lebih huruf.

Kata plus tidak pernah digunakan sebelum abad 15, disinyalir kalah dulu oleh minus, dimana pertama kali muncul pada karya Fibonacci (1202). Tidak perlu diragukan kata et dalam bahasa Latin sudah muncul pada banyak manuskrip. Simbol + dan – muncul bersama-sama pada tahun 1456 yang terdpat pada manuskrip yang tidak diterbitkan karya Regiomontanus [1436 – 1476]. Di Inggris, Robert Recorde [1510 - 1558], pengarang buku matematika, menulis simbol + dan – dalam buku Ground of Artes. Namun semua itu baru mendapat pengakuan umum dan berlaku umum terhitung tahun 1630.




sumber : http://www.mate-mati-kaku.com/asalAsalan/Simbolperjumlahandanpengurangan.html


.

Simbol perkalian (x) dan pembagian (:)

Sejarah

Simbol untuk perkalian (x) dan pembagian (:) berkembang kemudian, setelah simbol + dan -. Simbol x untuk perkalian diperkenalkan oleh matematikawan Inggris, William Oughtred pada tahun 1631 yang termaktub dalam buku karyanya, Clavis mathematicae (“kunci menuju metematika”). Simbol itu dipakai untuk menandai “perkalian silang.”

Ternyata tidak mudah artitamtikawan menerima simbol itu karena simbol itu tidak muncul dalam buku-buku teks umum aritmatika sampai pertengahan abad 19. Para aljabaris juga menolah menggunakan simbol itu karena mirip dengan [peubah] x yang digunakan. Mereka lebih suka menggunakan simbol . (titik/dot) untuk menandai operasi perkalian yang diperkenalkan oleh matematikawan sekaligus astronomer Inggris, Thomas Harriot dalam terrangkum dalam karyanya, Artis analyticae proxis, yang terbit pada kisaran tahun 1631 pula.

Adriaan Vlacq, pembuat tabel logaritma kerkewarganegaraan Belanda, juga mendukung penggunaan simbol titik lewat buku, Aritmetica logarithmica yang terbit pada tahun 1628, meskipun tidak menyebutkan simbol itu sebagai simbol operasi. Titik sebagai simbol perkalian mulai dipakai dalam perkalian aljabar yang dirintis oleh Leibniz (1686). Evolusi, akhirnya, mau menggunakan x sebagai simbol perkalian.

Penulisan pembagian untuk dua bilangan adalah menempatkan pembilang di atas penyebut seperti di bawah ini.

9
5

Tanpa menuliskan simbol pembagian ditengahnya sudah ada dalam buku Bamberger Richenbuch (1483). Garis pembatas untuk menyatakan pembagian kemudian dipakai sehingga penulisan menjadi:
9
5

Simbol : muncul dalam edisi cetak, untuk pertama kali dalam buku Tentsche Algebra (1659) karya Johann Heinrich Rahn yang kemudian menyeberang ke Inggris karena buku itu diterjemahkan pada tahun 1668. Simbol : lama dipakai di benua Eropa dan Skandinavia sebagai simbol pembagian sebelum diterima secara universal.



sumber : http://www.mate-mati-kaku.com/asalAsalan/Simbolperkaliandanpembagian.html


.

Iseng-iseng

Rubrik Iseng-iseng membahas semua keajaiban angka dan dalam beberapa hal dikaitkan dengan mitologi.

Apollonius (262 SM – 190 SM)



Riwayat
Tidak banyak informasi tentang Apollonius dari Perga yang lazim disebut dengan pakar pengukur tanah (geometer) terbesar. Namun karya-karyanya membawa dampak besar bagi perkembangan matematika. Buku karyanya yang terkenal, Conics (kerucut), mengenalkan istilah-istilah yang sekarang populer seperti: parabola, elips dan hiperbola.
Disebut dengan kerucut karena irisan dari sebuah kerucut akan menghasilkan tiga bentuk yang sudah disebut di atas. Masa mudanya tidak terlalu jelas, tapi diketahui bahwa dia mengalami masa pemerintahan Ptolemy Euergetes, Ptolemy Philopatus; ada laporan yang menyebut bahwa Apollonius adalah pengikut Ptolemy Philadelphus. Umurnya lebih kurang 25 – 40 tahun lebih muda dibandingkan dengan Archimedes.
Apollonius lainnya
Seperti halnya nama Archimedes yang banyak dipakai orang. Untuk menghindari kerancuan, maka masing-masing nama disebutkan asalnya. Begitu pula terdapat banyak nama Apollonius yang dikenal dalam hubungannya dengan ilmu. Beberapa nama Apollonius yang dikenal umum. Apollonius dari Rhodes yang lahir pada kisaran tahun 295 SM adalah ahli sastra Yunani, murid Callimachus yang juga guru dari Eratosthenes; Apollonius dari Tralles, dua abad SM, adalah seorang pemahat Yunani; Apollonius dari Tyana, abad pertama, adalah salah satu pengikut Pythagoras (Pythagorean); Apollonius dari Dyscolus, dua abad setelah masehi, ahli bahasa Yunani dan perintis pembelajaran tata-bahasa secara sistematis; dan Apollonius dari Tyre adalah nama pustakawan terkenal.
Riwayat
Apollonius yang menjadi matematikawan lahir di Perga, Pamphylia yang sekarang dikenal dengan sebutan Murtina atau Murtana, terletak di Antalya, Turki. Pada jaman itu, Perga adalah pusat kebudayaan dan lokasi kuil Artemis, dewi alam. Saat muda usia Apollonius pergi ke Alexandria dimana dia belajar di bawah bimbingan para pengikut Euclid sebelum mengajar di sana. Kemudian, Apollonius pergi ke Pergamun di mana di sana terdapat universitas dan perpustakaan besar untuk menyaingi perpustakaan besar di Alexandria sedang dalam tahap pembangunan. Pergamum saat ini tidak lain merupakan nama lain dari kota Bergama terletak pada propinsi Izmir di Turki, adalah kota Yunani kuno. Dengan lokasi pada 25 km dari laut Aegean pada perbukitan sebelah utara lembah sungai Caicus (sekarang disebut dengan sungai Bakir).
Di Pergemum, Apollonius bertemu dengan Eudemus yang menulis buku Sejarah Geometri (Hystory of Geometry) dan Attalus, yang diperkirakan adalah Raja Attalus I dari Pergamum. Prakiraan ini diawali dari kata pengantar buku Apollonius yang menunjukkan rasa hormat dan sembah takzim kepada Attalus.
Karya-karya yang hilang
Karya-karya Apollonius banyak yang hilang. Skema bilangan dari Apollonius barangkali adalah salah satu yang terselamatkan dari bagian terakhir buku II berjudul Kumpulan Matematikal (Mathematical Collections) dari Pappus (Semua buku I dan awal buku II hilang). Apollonius juga menulis Cara Cepat (Quick Delivery) yang berisikan pengajaran tentang tip-tip atau teknik-teknik penghitungan cepat. Diketahui bahwa karya-karya Apollonius yang hilang seperti: penjabaran nisbah/ratio (Cutting-off Ratio); penjabaran luas (cutting-off of an area); seksi penentu (On Determinate Section); Tangen; titik potong (vergings) dan Plane Loci. *
Dari gambaran yang ditulis dari karya-karya Pappus dan para pendahulunya, muncul gagasan, pada abad ke-17, untuk merekonstruksi buku-buku geometri karya matematikawan Yunani kuno yang hilang, dimana makalah karya Apollonius adalah salah satu diantaranya. Kelak karya Apollonius ditemukan oleh para bangsawan Perancis (termasuk Fermat) pada abad 17 yang memberi pengaruh besar bagi para matematikawan Perancis pada umumnya dan Fermat pada khususnya.
Karya puncak, Conics (kerucut)
Buku pertama Conics (kerucut) membahas segala sesuatu tentang hal-hal mendasar tentang kurva-kurva yang disebut “paling lengkap dan lebih umum dibanding pengarang-pengarang lain.” Dalam buku ini pula disebutkan theorema dan transformasi koordinat dari sistem yang didasarkan pada tangen dan diameter pada titik P yang berada pada kerucut ke dalam sistem baru yang ditentukan oleh tangen dan diameter dari titik Q yang berada pada kurva yang sama. Apollonius sangat mengenal karakteristik hiperbola dengan asimtut sebagai absisnya. Persamaan xy = c2 adalah hiperbola sama sisi yang mirip dengan rumus hukum Boyle tantang gas.
Buku kedua melanjutkan bahasan tentang tangen dan diameter. Dengan menggunakan proposisi-proposisi dan gambar-gambar kurva.
Buku ketiga disebut oleh Apollonius yang paling membanggakan dirinya karena disebutkan berisi theorema-theorema yang bermanfaat untuk melakukan (operasi) sintesis dan solid loci penentuan limit. Disebutkan olehnya bahwa Euclid belum menyinggung topik ini. Locus tiga dan empat garis memegang peran penting dalam matematika sejak Euclid sampai Newton.
Buku keempat menggambarkan keinginan pengarangnya untuk menunjukkan “Berapa banyak cara bagian kerucut dapat saling berpotongan.” Ide tentang hiperbola dua cabang yang berlawanan arah adalah gagasan Apollonius.
Buku kelima berhubungan dengan maksimum dan minimum garis lurus yang bersinggungan dengan kerucut.
Pada saat buku ini dibuat, tidak pernah terpikirkan bahwa akan konsep-konsep didalamnya mendasari dinamika bumi (terrestial) dan mekanika alam semesta (celestial). Tanpa pengetahuan tentang tangen terhadap parabola mustahil analisis terhadap lintasan peluru tidaklah dimungkinkan.
Buku keenam, berisikan proposisi-proposisi tentang bagian dari kerucut apakah sama atau beda, mirip atau berlainan. Terdapat satu proposisi yang membuktikan bahwa apabila sebuah kerucut dipotong oleh dua garis sejajar terjadilah bagian-bagian hiperbolik dan eliptik, bagian yang mirip namun tidak sama.
Buku ketujuh kembali membicarakan tentang mentasrifkan (conjungate) diameter-diameter dan berbagai “proposisi-proposisi baru” yang membahas diameter dari bagian-bagian kerucut.
Asal-usul nama
Archimedes sudah mencetuskan nama parabola yang artinya bagian sudut kanan kerucut. Apollonius (barangkali melanjutkan penamaan Archimedes) mengenalkan kata elips dan hiperbola dalam kaitannya dengan kurva-kurva tersebut. Istilah “elips”, “parabola”, dan “hiperbola” bukanlah penemuan Achimedes maupun Apollonius; mereka mengadaptasi kata dan artinya dari para pengikut Pythagoras (pythagorean), dalam menyelesaikan persamaan-persamaan kuadratik untuk aplikasi mencari luas. Elips berarti kurang atau tidak sempurna digunakan untuk memberi nama apabila luas persegi panjang pada bidang yang diketahui disetarakan dengan bagian garis tertentu yang diketahui hasilnya kurang. Hiperbola yang artinya kelebihan dipakai apabila luas persegi panjang pada bidang yang diketahui disetarakan dengan bagian garis tertentu yang diketahui hasilnya lebih. Parabola yang artinya di samping atau pembanding) tidak mengindikasikan lebih atau kurang. Apollonius menggunakan ketiga istilah di atas dalam konteks baru yaitu sebagai persamaan parabola dengan verteks pada titik asal, (0,0), sistem Kartesian, adalah y² = lx (l = “latus rectum” atau parameter) sekarang diganti dengan 2p atau bahkan 4p.

* Geometer Yunani membagi kurva menjadi 3 kategori. Pertama, “plane loci” terdiri dari garis lurus dan lingkaran; kedua, “solid loci” terdiri dari bagian/potongan kerucut; ketiga, “liniear loci” gabungan antara garis dan bentuk bidang.
Sumbangsih
Konsep parabola, hiperbola dan elips banyak memberi sumbangan bagi astronomi modern. Buku Newton Principia memberi harapan orang melakukan perjalanan ke luar angkasa. Baru tahun 1960-an, keinginan itu terlaksana karena pemahaman konsep minima, maksima dan tangen dari Apollonius. Karya Apollonius kelak digeneralisasikan oleh Descartes - setelah ada “sentuhan” Pappus, untuk menguji geometri analitik. Tema seperti buku teks dan bahasan yang mendalam dan rinci mamberi inspirasi bagi perkembangan matematika abad-abad berikutnya.


sumber : http://www.mate-mati-kaku.com/matematikawan/apollonius.html

Archimedes (287 – 212 SM)


“Berikan saya tempat untuk berdiri dan saya akan mengangkat bumi”
(“Give me a place to stand on and I will move the earth”)

Archimedes

Apabila Matematikawan dan fisikawan ikut perang



Riwayat
Archimedes adalah seorang arsitokrat. Archimedes adalah anak astronom Pheidias yang lahir di Syracuse, koloni Yunani yang sekarang dikenal dengan nama Sisilia. Dia mempunyai hubungan keluarga dengan tiran (raja) Hieron II yang berkuasa di Syracuse pada jaman itu. Archimedes berteman dengan Gelon, anak Hieron II, dimana keduanya adalah matematikawan andalan raja. Membicarakan Archimedes tidaklah lengkap tanpa kisah insiden penemuannya saat dia mandi. Saat itu dia menemukan bahwa hilangnya berat tubuh sama dengan berat air yang dipindahkan. Dia meloncat dari tempat mandi dan berlari terlanjang di jalanan Syracuse sambil berteriak “Eureka, eureka!” (saya sudah menemukan, saya sudah menemukan). Saat itulah Archimedes menemukan hukum pertama hidrostatik. Kisah di atas diawali oleh tukang emas yang tidak jujur dengan mencampurkan perak ke dalam mahkota pesanan Hieron. Hieron curiga dan menyuruh Archimedes untuk memecahkan problem tersebut atau melakukan pengujian tanpa merusak mahkota. Rupanya saat mandi tersebut, Archimedes memikirkan problem tersebut. Tentang nasib tukang emas itu sendiri tidak ada yang mengetahuinya.

Masa sekolah
Saat muda usia dia menuntut ilmu di Alexandria, Mesir. Pada saat itu dia menjalin persahabatan dengan dua orang “istimewa.” Teman pertama, Conon adalah matematikawan berbakat yang sangat dihormati Archimedes baik secara pribadi maupun intelektual. Teman kedua, Eratosthenes *), juga seorang matematikawan sekaligus astronom, meski mempunyai “kelainan” yaitu: suka bersolek. Dengan kedua teman ini, teristimewa Conon, Archimedes dapat berbagi pemikiran dan berdiskusi. Akhirnya, Conon meninggal dan surat menyurat antar keduanya digantikan oleh Dositheus, murid Conon.
Tahun 1906, J.L. Heiberg, membuat penemuan dramatis di Konstantinopel yaitu: “surat” Archimedes kepada Erastosthenes: Theorema mekanikal, suatu metode. Dalam suratnya ini, Archimedes mengukur berat, dalam imajinasi, guna menghitung luas atau mengetahui volume (isi) sesuatu yang tidak diketahui lewat sesuatu yang diketahui, dia merintis ilmu pengetahuan berdasar penggalian fakta; fakta ini digunakan sebagai pembanding untuk kemudian dibuktikan secara matematis.
Ada versi lain yang menyebut bahwa Archimedes diperkirakan berguru pada murid Euclid. Archimedes dapat disebut sebagai matematikawan sekaligus fisikawan pertama, dimana selain menemukan “mesin perang”, alat-alat mekanis serta pompa air untuk mengangkat air sungai Nil guna mengairi (irigasi) tanah-tanah di seluruh negeri.

Sifat eksentrik Archimedes
Dalam hal eksentrik Archimedes sering dibandingkan dengan Weierstrass (1815 – 1897). Menurut penuturan saudarinya, Weierstrass – pada waktu sekolah, tidak pernah diberi kepercayaan untuk memegang pinsil. Apabila memegang pinsil, maka dia akan menggambari apapun yang dianggapnya masih kosong. Dari wallpaper sampai balik kerah baju. Sebaliknya, Archimedes - belum mengenal kertas, selalu menggambar di pasir atau tanah yang lembek sebagai ganti fungsi “papan tulis.” Dia akan menggambar sesuka hatinya. Apabila duduk di dekat perapian, dia akan mengambil arang atau sisa pembakaran dan digunakan untuk menggambar. Setelah mandi, biasanya dia akan melumuri seluruh tubuhnya dengan minyak zaitun, yang lazim dipakai pada jaman itu, daripada mengenakan pakaian, dia akan menggambar diagram-diagram dengan menggunakan jari kuku dengan “papan tulis” adalah seluruh tubuhnya yang berminyak. Ada sifat yang lazim diidap oleh para matematikawan seperti: lupa makan. Sifat lupa makan Archimedes, saat menekuni problem matematika, ternyata diwariskannya kepada [Isaac] Newton dan [William Rowan] Hamilton.

Archimedes terlibat perang
Saat ini Romawi adalah kerajaan dengan banyak pejabatnya korup. Di Mediteranian, sekarang Tunisia, dan kota Carthage, muncul dan menjadi penguasa dengan koloni meliputi wilayah sepanjang pantai Afrika sampai Spanyol. Romawi merasa iri hati dan menyerbu. Dua kali serangan yang disebut dengan perang Punic, mampu menaklukkan Carthage. Tetapi tidak lama kemudian, Carthage mampu bangkit kembali, sehingga memaksa Romawi kembali melancarkan serangan, perang Punic ketiga. Kali ini, tentara Romawi tidak memberi ampun lagi. Begitu dapat menaklukkan, mereka menghancurkan kota dan membunuhi para penghuninya (146 SM).
Di atas adalah latar belakang terjadinya perang Punic. Selama perang Punic ini, Romawi mengirim pasukan di bawah komando Claudius Marcellus pada tahun 214 SM untuk menyerang Syracuse. Alasan utamanya adalah karena raja Syracuse menjalin hubungan dengan Carthage; alasan lain, tentara Romawi selalu dapat menaklukkan wilayah kecil dengan mudah. Tetapi saat ini mereka ketemu batunya.
Tentara Romawi menyerbu Syracuse dari segala penjuru, daratan dan lautan, terhadang oleh rekayasa sains; tidak canggih namun cerdik. Penduduk Syracuse sudah diajari bagaimana menggunakan tuas (lever) dan berbagai macam bentuk pelontar, dan mereka menerapkan kemampuan ini pada perang di darat maupun di laut. Tentara Romawi dipaksa mundur dan lari lintang-pukang di bawah hantaman “badai” batu dan panah yang dilontarkan oleh ketapel-ketapel buatan Archimedes. Belum lagi adanya serangan dari pelontar tali berisi peluru dan busur kecil (crossbow) yang menembakkan anak panah besi.
Serangan pasukan Romawi lewat laut, hasilnya tidak jauh berbeda, hampir semua armada kapal perang mereka hancur. Besi-besi besar dijatuhkan oleh pasukan Syracuse lewat derek (crane) yang dibangun, mampu menenggelamkan kapal-kapal Romawi. Derek lain digunakan mengangkat kapal-kapal Romawi dan pasukan-pasukan berebut menyelamatkan diri dengan terjun ke laut. Masih ditambah dengan cermin pembakar, maka lengkaplah “derita” kapal-kapal Romawi. Seorang tua menciptakan cermin heksagonal dan di sela-sela cermin berukuran proporsional tersebut dipasang empat cermin segi empat, digerakkan dengan besi yang dibentuk seperti engsel jaman modern, diarahkan ke matahari. Berkas sinar yang dipantulkan oleh cermin-cermin tersebut diarahkan ke kapal, menimbulkan api dan kapal terbakar. Pengoperasian cermin dilakukan dari ketinggian di tengah kota oleh seorang lelaki tua.
Siasat lain mulai dicari. Tentara Romawi mencoba membangun tembok di luar tembok kota, namun tidak pernah selesai dibangun. Muasalnya adalah derek dengan bandulan besi berputar mengelilingi kota Syracuse untuk menghancurkan tembok-tembok tersebut sekaligus menghalau pasukan Romawi yang akan maju.
Gagal dengan serangan frontal, Marcellus menggunakan cara lain. Saat penduduk Syracuse merayakan kemenangan, diselimuti oleh gelapnya malam, dikirimlah mata-mata (Buku legendaris “Seni Berperang” Sun Tzu – hidup 500 SM, tentang penggunaan mata-mata, bab 13, bab terakhir, barangkali mengilhami atau barangkali ide dari perang Troya dengan taktik kuda Troya) untuk menghancurkan “monster-monster” ciptaan Archimedes dan membuka pintu gerbang kota. Perang berlangsung selama 3 tahun, sebelum Romawi dapat mengalahkan si kecil cerdik, Syracuse.

Penemuan-penemuan Archimedes
Minat Archimedes adalah matematika murni: bilangan, geometri, menghitung luas bentuk-bentuk geometri. Archimedes dikenal karena kehebatannya mengaplikasikan matematika. Kehebatan inilah yang akan diuraikan di bawah ini.
Archimedes berjasa menemukan ulir Archimedes, alat untuk mengangkat air dengan jalan memutar gagang alat ini dengan tangan. Penggunaan awal alat ini adalah untuk membuang air yang masuk ke dalam perahu atau kapal. Tapi dalam perkembangannya digunakan untuk memompa air dari dataran yang lebih rendah ke tanah yang lebi tinggi. Alat ini sampai sekarang masih dipakai oleh para petani di seluruh dunia.
Penggunaan cermin pembakar, memberi indikasi bahwa beberapa bentuk geometri sudah diketahui Archimedes, teristimewa bentuk hiperbola. Bentuk lingkaran, elips dan hiperbola terbentuk hanya bagaimana cara kita mengiris suatu bidang. Parabola adalah bentuk istimewa: dapat “mengambil” sinar matahari, dari arah manapun, dan difokuskan pada suatu titik, dan konsentrasikan semua energi cahaya pada bidang sempit untuk dipancarkan kembali dalam berkas sinar yang sangat panas.
Archimedes sudah mencoba menghitung luas parabola, elips, hiperbola dan menentukan titik pusat gravitasi pada setengah lingkaran dan lingkaran. Tidak diketahui secara pasti berapa banyak karya-karya Achimedes yang hilang atau belum ditemukan satu yang terpenting, Metode (The Method, sebagian besar sudah ditemukan pada tahun 1906), tapi karya lain termasuk: On Spiral, On the Measuremant of the Circle, Quadrature of the Parabola, on Conoids & Spheroids, on the Sphere & Cylinder, Books of Lemmas dll. tidak sesuai dengan segala sesuatu yang dihasilkan Archimedes pada jaman Romawi.
Archimedes adalah orang pertama yang memberi metode menghitung besar ? (pi) dengan derajat akurasi yang tinggi. Menghitung besar ? dilakukan dengan cara membuat lingkaran diantara dua segi enam. Luas segi enam kecil < luas lingkaran < luas segi enam besar. Dengan memperbesar jumlah segi - Archimedes membuat 96 sisi, diperoleh besaran:

3 10/71 < Л < 3 1/7
(3,14084 < Л < 3,14285)

Dalam menghitung ?, jaman modern, para matematikawan mengikuti jejak Archimedes. Sebagai contoh, pada abad 17, Ludolph van Ceulen dari Jerman, menggunakan segi 262. Upaya gigih guna mencari besaran ? ini dilakukannya sampai dia meninggal. Jadi tidaklah mengherankan, apabila orang Jerman – untuk menghormati jasa, pada nisan dipahat “Angka Ludolphian” yang berarti ? di Jerman.
Penggunaan tuas dalam perang dengan menciptakan crane, menunjuk bahwa Archimedes sudah memahami prinsip tuas, yaitu: dua benda yang mencapai keseimbangan berat pada suatu jarak tertentu memiliki besar yang proporsional secara timbal-balik.

Archimedes meninggal
Apabila pada tahun-tahun sebelumnya, penemuan-penemuan Archimedes selalu membuat pasukan Romawi frustrasi. Mereka tidak dapat menaklukan Syracuse untuk dijadikan koloni. Alat-alat mekanik ciptaan Archimedes selalu dapat mementahkan dan menghancurkan semua serangan mereka. Salah satu kisah menarik adalah tentang Archimedes dalam perang ini adalah menciptakan “cermin-cermin pembakar” yang mampu membakar kapal-kapal Romawi dari kejauhan. Tahun 212 SM, Syracuse akhirnya jatuh ke tangan Romawi, setelah terjadi penyusupan di malam hari.
Singkat kata, Marcellus dengan didampingi para prajuritnya mendatangi pencipta alat yang membuat semua petaka bagi tentara Romawi. Saat itu Archimedes sedang menggambar diagram di pasir. Pikiran dan matanya hanya terpusat pada diagram-diagram yang digambarnya. Tidak memperdulikan sekelilingnya. Marcellus dan prajurit pengikutnya diam mengamati sampai akhirnya seorang prajurit kehilangan kesabaran. Seorang prajurit Marcellus datang menghampiri dan memerintahkan agar Archimedes segera menghadap komandan mereka, namun dia tidak menuruti perintah dan baru akan menghadap setelah menyelesaikan problem dan memberikan pembuktiannya.
Kesabaran prajurit itu habis dan maju untuk menangkap Archimedes. “Jangan sentuh lingkaran-lingkaran yang saya buat!” adalah teriakan terakhir Archimedes ketika prajurit itu menginjak gambar diagram di atas pasir. Prajurit yang tidak diketahui namanya itu marah, menghunus pedang dan membunuh Archimedes yang sudah berusia 75 tahun.

*) Eratoshenes (273 – 192 SM) melakukan penghitungan diameter bumi pada tahun 230 SM. Dia menengarai bahwa kota Syene di Mesir terletak di equator, dimana matahari bersinar vertikal tepat di atas sumur pada hari pertama musim panas. Eratoshenes mengamati fenomena ini tidak dari rumahnya, dia menyimpulkan bahwa matahari tidak akan pernah mencapai zenith di atas rumahnya di Alexandria yang berjarak 7° dari Syene.
Jarak Alexandria dan Syene adalah 7/360 atau 1/50 dari lingkaran bumi yang dianggap lingkaran penuh adalah 360°. Jarak antara Syene sampai Alexandria +/- 5000 stade. Dengan dasar itu dibut prakiraan bahwa diameter bumi berkisar:
50 x 5000 stade = 25.000 stade = 42.000 Km.
Pengukuran tentang diameter bumi diketahui adalah 40.000 km. Ternyata, astronomer jaman kuno juga tidak kalah cerdasnya, dengan deviasi kurang dari 5%.

Sumbangsih
Prinsip-prinsip fisika dan matematika diaplikasikan oleh Archimedes baik untuk tujuan “mulia” – pompa ulir, untuk mengangkat air dari tempat yang lebih rendah maupun untuk tujuan perang. Memang tidak dapat dihindari bahwa suatu penemuan biasanya akan dipicu oleh suatu kebutuhan mendesak. Cermin pembakar, derek (crane) untuk melontarkan panah dan batu atau menenggelamkan kapal adalah penguasaan fisika Archimedes yang dapat dikatakan luar biasa pada jamannya.
Kontribusi penghitungan Л (pi) dari Archimedes barangkali dapat disebut sebagai awal bagi para pengikut untuk meniru metode yang dipakai untuk menghitung luas lingkaran. Terus memperbanyak jumlah segi enam untuk menghitung besaran Л (pi) mengilhami para matematikawan berikutnya bahwa adanya suatu ketidakhinggaan - seperti paradoks Zeno, dimana hal ini mendorong penemuan kalkulus. 



sumber : http://www.mate-mati-kaku.com/matematikawan/archimedes.html

Euclid (325 – 265 SM)

“Tidak ada jalan mulus mempelajari geometri”
(“There is no royal road to geometry”)
Euclid
Pemberi dasar bahwa matematika adalah ilmu yang perlu pembuktian

Riwayat
Tidak lama Pythagoras meninggal, lahirlah Euclid. Pada era ini matematika lebih dikenal sebagai sains dan kurang mistik. Theorema-theorema baru ditambahkan: kurva-kurva, lingkaran-lingkaran dan bentuk-bentuk lain dipelajari sama halnya seperti garis lurus dan bidang–bidang datar. Tahun yang disebut di atas hanya prakiraan karena tidak adanya sumber yang layak dipercaya. Ada sumber yang menyebutkan Euclid hidup antara tahun 330 - 275 SM.
Lembaga yang menaungi pembelajaran saat itu adalah akademi Plato. Masa keemasan Yunani dan kebebasan berekspresi membuat pemikir-pemikir baru bermunculan. Didirikan pada 380 SM, lolos dari invasi-invasi yang datang silih berganti, hidup dalam suksesi banyak tiran dan menjadi saksi keruntuhan dua kebudayaan besar – Yunani dan Romawi – sebelum akhirnya ditutup pada abad keenam oleh kaisar Justinian.
Euclid diperkirakan belajar pada akademi Plato ini sebelum diangkat menjadi pengajar matematika di tempat yang sama. Ada cerita Euclid masih mengajar di akademi ini ketika Alexander Agung menyatakan misinya untuk menaklukkan dunia. Yunani, bersama Mesir dan Mediterian dan negara-negara di kepulauan Yunani ditaklukkan oleh angkatan perang Macedonian. Pada tahun 332 SM, Alexander Agung menetapkan ibukota negara di Alexandria, Mesir dan sembilan tahun kemudian ia meninggal pada usia 33 tahun. Tahta diberikannya kepada jendral Ptolemy atau Claudius Ptolemaeus.
Universitas Ptolemy
Ptolemy - orang terpelajar *, membangun bukan saja suatu dinasti, mencakup salah satu keturunannya yang sangat terkenal, Kleopatra, tetapi juga mendirikan universitas yang lebih besar dari akademi Plato dan mengundang Euclid untuk mengajar di sana. Di tempat baru ini, Euclid merintis pengajaran matematika dan tinggal di sana sampai akhir hayatnya. Sebagai seorang guru, dia barangkali salah satu mentor Archimedes.
Ada legenda yang menceritakan bahwa anak Ptolemy bertanya kepada Euclid apabila ada cara mudah belajar geometri dengan mempelajari semua preposisi. “Tidak ada cara mulus mempelajari geometri,” adalah jawaban Euclid sambil menyuruh pangeran kembali membaca buku geometri. Jawaban ini menjadi kutipan (quotation) terkenal dari Euclid.
Euclid meninggal namun universitas Ptolemy di Alexandria terus berjalan. Salah satu murid terbesarnya – tanpa mengesampingkan teman sesama mahasiswa, adalah Archimedes. Orang Yunani dari Syracuse yang menimba ilmu di universitas, dimana salah satu pengajarnya adalah Euclid.
Pribadi Euclid
Euclid dapat disebut sebagai matematikawan utama. Dia dikenal karena peninggalannya berupa karya matematika yang dituang dalam buku The Elements sangatlah monumental. Buah pikir yang dituangkan ke dalam buku tersebut membuat Euclid dianggap sebagai guru matematika sepanjang masa dan matematikawaan terbesar Yunani.
Pribadi Euclid digambarkan sebagai orang yang baik hati, jujur, sabar dan selalu siap membantu dan bekerjasama dengan orang lain. Banyak theorema-theorema yang dijabarkannya merupakan hasil karya pemikir-pemikir sebelumnya termasuk Thales, Hippokrates dan Pythagoras.
Banyak informasi salah tentang Euclid. Ada yang menyebutkan bahwa dia adalah anak Naucrates yang lahir di Tyre. Informasi lain mengemukakan bahwa di lahir di Megara. Memang ada nama yang sama, Euclid dan lahir di Megara, tetapi hal itu terjadi 100 tahun sebelum kelahiran Euclid dan profesi Euclid dari Megara adalah filsuf. Euclid sendiri lahir di Alexandria. Kesalahan nama ini jamak terjadi karena pada masa itu banyak orang bernama Euclid.
Karya besar Euclid
The Element dapat dikatakan karya fenomenal pada jaman itu. Terdiri dari 13 buku yang tersusun berdasarkan tema dan topik. Setiap buku diawali dengan difinisi, postulat (hanya untuk buku I), preposisi, theorema sebelum ditutup dengan pembuktian dengan menggunakan difinisi dan postulat yang sudah disebutkan. Buku ini ke luar Yunani tahun 1482, diterjemahkan ke dalam bahasa Latin dan Arab, serta menjadi buku teks geometri dan logika pada awal tahun 1700-an. Garis besar isi masing-masing buku.
Buku I : Dasar-dasar geometri: teori segitiga, sejajar dan luas
Buku II : Aljabar geometri
Buku III : Teori-teori tentang lingkaran
Buku IV : Cara membuat garis dan gambar melengkung
Buku V : Teori tentang proporsi-proporsi abstrak
Buku VI : Bentuk yang sama dan proporsi-proporsi dalam geometri
Buku VII : Dasar-dasar teori angka
Buku VIII : Proporsi-proporsi lanjutan dalam teori angka
Buku IX : Teori angka
Buku X : Klasifikasi
Buku XI : Geometri tiga dimensi
Buku XII : Mengukur bentuk-bentuk
Buku XIII : Bentuk-bentuk tri-matra (tiga dimensi)
Euclid mencetuskan 5 postulat yang kemudian menjadi pokok bahasan. Agar tidak terjadi salah interpretasi, maka postulat kelima juga disajikan dalam bahasa Inggris. Hal ini disengaja, karena munculnya geometri non-Euclidian, dirintis oleh Gauss, diawali dengan menganggap postulat kelima salah total..
1. Garis lurus dapat digambar dari (sembarang) titik sampai (sembarang) titik lainnya.
2. Ujung garis lurus dapat dilanjutkan terus sebagai garis lurus.
3. Lingkaran dapat digambar dari sembarang titik pusat dan dengan jari-jari berbeda.
4. Semua sudut-sudut di sisi kanan besarnya sama dengan sisi lainnya.
5. Apabila garis lurus terpotong menjadi dua garis lurus, menyudut di sisi dalam pada kedua garis pada sisi yang sama daripada dua sudut yang sejajar, jika diteruskan sampai ke (titik) tak terhingga, akan berpotongan pada sisi dimana sudutnya lebih kecil dibandingkan sudut yang terbentuk dari dua garis.
(If a straight line falling on two straight lines makes the interior angles on the same side together less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which the angles are together less than two right lines)
Theorema-theorema pada Elements adalah kompilasi karya para matematikawan sebelumnya – Pythagoras, Eudoxus, Menaechunus, Hippocrates, menampilkan pembuktian-pembuktian kuno dengan mengganti dengan baru dan disederhanakan. Element menjadi – dan abadi – buku teks baku dalam geometri. Saat mesin cetak ditemukan, buku ini termasuk buku pertama yang dicetak.
Euclid mencoba memecahkan problem irrasional yang membuat Pythagoras putus-asa. Dengan menggunakan contoh segitiga siku-siku dengan panjang kedua sisinya 1, maka sisi panjang segitiga adalah x² = 2. Euclid membuat asumsi bahwa solusinya dapat ditemukan. Solusi versi Euclid hanya menyebutkan bahwa v2 adalah (bilangan) irrasional yang artinya bilangan tersebut tidak dapat dibuat nisbah (ratio), bukan karena bilangan tersebut “kurang waras.” Rasanya ketiga-belas buku dan “kandungan” lima postulat sulit dibantah. Ternyata ada ‘cacat’ pada postulat kelima.
Cacat pada postulat Euclid
Semua postulat membawa apa yang disebut dengan pembuktian diri (self-evidence). Postulat kelima dibuktikan oleh Euclid tanpa memberikan cara pembuktian. Upaya pertama untuk membuktikan postulat kesejajaran ini dilakukan oleh Girolamo Saccheri, pendeta Jesuit berkebangsaan Italia, yang mendukung Euclid dengan menerbitkan buku berjudul Euclides ab omni naevo vindicatus (“Euclid bebas dari semua kesalahan”) pada tahun 1733. Buku tersebut tidak dapat menuntaskan kesalahan Euclid. Matematikawan terkemuka Jerman, Gauss, pertama kali menemukan kesalahan postulat kelima tapi malu untuk mempublikasikannya sehingga kehormatan diberikan kepada dua matematikawan lain yang mengungkapkannya dengan cara penemuan Gauss. Janos Bolyai dari Hongaria dan Nicolai Lobachevsky secara terpisah mampu membuktikan cacat postulat kelima Euclid dengan cara berbeda pula.
Penemuan kesalahan ini membuat berkembangnya geometri model baru. Dirintis oleh Beltrami dari Italia, disusul Cayley dari Inggris, Poincare dari Perancis dan Felix Klein dari Jerman. Terakhir, dirombak, diubah dan dilakukan penyesesuai kecil terhadap postulat-postulat Euclid oleh [Bernhard] Riemann dari Jerman sehingga muncul bentuk-bentuk baru: hiperbola, parabola, ellips yang merupakan jawaban bahwa alam semesta bukanlah pengikut aliran Euclid (non-Euclidian).
Tiga problem matematika klasik
Para matematikawan sejak dahulu berkutat dengan tiga problem yang tidak dapat dipecahkan pada saat itu. Memang ketiga problem itu menjadi mudah setelah ada “campur-tangan” pada matematikawan modern yang terus menyempurnakan alat-alat matematika. Adapun ketiga problem ini adalah:

1. Persamaan pangkat 3
4x³ - 3x - a = 0

a adalah angka tertentu. Saat itu Yunani tidak mengenal pangkat tiga (kubik). Dengan penggaris dan kompas mereka hanya mampu menyelesaikan persamaan linier (pangkat 1) dan persamaan kuadrat (pangkat 2).
2. Menggandakan kuadrat
2x³ = y³ atau x³ = 2.
Problem yang tidak dapat dipecahkan terjadi karena sebuah legenda. Bangsa Athena, menurut cerita, konsultasi dengan Orakel (tempat dibangun kuil dan dewa bersabda) sebelum melakukan kampanye perang dan dijawab bahwa untuk mempertahankan kejayaan mereka harus menggandakan lebar altar pemujaan terhadap Apolo (Anak Zeus yang dipercayai oleh ayahnya untuk menyingkapkan keputusan-keputusan ayahhandanya untuk umat manusia), yang berbentuk kubus. Mereka segera membuat altar dengan dua kali panjang, dua kali lebar dan dua kali tinggi dibanding altar aslinya.
Percaya bahwa mereka sudah memenuhi keinginan Oracle, mereka dengan penuh percaya diri menuju perang – dan kalah. Ternyata, mereka membuat altar delapan kali besarnya, bukan 2 kali.
3. Menggambar lingkaran.
Karena tidak ada alat yang tersedia, pada saat itu, tidaklah dimungkinkan menggambar lingkaran bahkan dinyatakan dalam bentuk persamaan aljabar. Problem menyangkut menentukan besaran p (pi), nisbah antara lingkaran dan diameter. Kendala datang dari p yang merupakan bilangan irrasional sekaligus transendental (= bukan bilangan yang dapat diekspresikan dalam aljabar. Sulit ‘memahami alam tanpa kehadiran bilangan ini. Ada 2 bilangan transendental yang terkenal: p dan e).
Ketiga problem klasik ini akan selalu membayangi kiprah para matematikawan. Tidak terkecuali Euclid, tanpa pernah dapat menyelesaikan. Matematikawan berikutnya akan selalu menghadapi dan berupaya memecahkan problem tersebut. Penyelesaian suatu problem berarti nama baik sekaligus prestasi. Tidak jarang terjadi kecurangan, saling “curi” ide, penghianatan. Dan hal ini selalu terjadi di jaman dulu sampai jaman sekarang. Banyak contoh dapat dibaca pada riwayat-riwayat para matematikawan selanjutnya.
Euclid dan bilangan prima
Euclid, seperti matematikawan jaman sekarang, mempelajari bilangan prima, mencari untuk menentukan bilangan mana yang masuk kategori prima atau bukan. Euclid tidak pernah dapat menentukan bilangan prima, tetapi dia mampu memberikan jawaban tentang bilangan prima: bilangan prima itu tidak terhingga.
Anak SD sekarang sudah terbiasa dengan bilangan prima. Dari angka 2 sampai dengan 50 terdapat 15 bilangan prima (2, 3, 5, 7, 11, 13, `7, `9, 23, 29, 31, 37, 41, 43, 47) ; dari 50 sampai dengan 100 hanya 10 bilangan prima.
Euclid membuat pernyataan: jika bilangan prima terbesar adalah n, maka pasti ada bilangan > n, di mana dapat dicari dengan menggunakan 1 x 2 x 3 dan seterusnya sampai n, kemudian ditambah 1 untuk mendapatkan hasilnya. Simbol matematika untuk mengekspresikan adalah n! + 1 (n faktorial ditambah 1).
Kondisi sekarang
Apabila dahulu Euclid dipuja, sekarang keadaan berbalik. Banyak pengikutnya mulai “menyerang” Euclid dengan menyebut dia terlalu arogan dan memaksakan suatu pembuktian yang dibuatnya selalu benar, misalnya: salah satu sisi segitiga tidak akan lebih panjang daripada jumlah kedua sisi lainnya. Matematikawan modern mengkritik Euclid dari sudut pandang lain, yaitu: Euclid tidak cermat dalam melakukan pembuktian. Terdapat beberapa kesalahan dan ide-ide yang tidak dapat dipertanggungjawabkan. Yang paling mencolok adalah postulat kelima yang juga lazim disebut dengan postulat kesejajaran.
Para matematikawan berikutnya tidak dapat menerima pernyataan-pernyataan (postulat) yang tidak dapat dibuktikan itu. Kemudian, muncul geometri non-Euclidian yang menggantikan postulat-postulat itu dengan pernyataan yang dapat diterima umum.
Masa tua Euclid
Pindah untuk mengajar di Alexandria yang lebih kosmopolitas, modern tidak membuat Euclid gembira dibandingkan tinggal di kota-kota di Yunani yang makin lama makin sepi. Di sini dia melihat aplikasi matematika. Pompa air, air terjun buatan bahkan motor yang digerakkan tenaga uap tidak memberi makna kehidupan bagi Euclid. Ia lebih suka matematika untuk dipelajari bukan untuk aplikasi. Euclid meninggal di Alexandria.

* Seorang astronomer yang menghitung gerakan bumi, bulan dan matahari. Perhitungan ini kelak akan disempurnakan oleh Newton.

Sumbangsih
Format yang dibuat Euclid membantu terjadi standarisasi matematika Yunani. Subyek-subyek yang dibahas oleh Euclid mencakup bentuk-bentuk, theorema Pythagoras, persamaan dalam aljabar, lingkaran, tangen, geometri ruang, teori proporsi, bilangan prima, bilangan sempurna, integer positif, bilangan irrasional, gambar tri-matra (tiga dimensi). Euclid meninggalkan warisan yang berguna bagi pengembangan matematika.
Kompilasi hasil-hasil karya matematikawan sebelumnya lewat buku Elements, menunjukkan “benang merah” bahwa pengembangan matematika tidak lepas dari peran pemikir Yunani. Kritik terhadap Euclid justru memicu munculnya non-Euclidian yang melengkapi bahasan Euclid. Bentuk parabola, hiperbola dan elips mulai mendapatkan perhatian dari para matematikawan.



sumber : http://www.mate-mati-kaku.com/matematikawan/euclid.html

.

Menaechmus (380 – 320 SM)


Riwayat
Disebutkan bahwa Menaechmus adalah murid Eudoxus yang lahir di Alopeconnesus, Asia kecil (sekarang Turki). Tempat kelahiran itu letaknya tidak jauh dari Cnidus, tempat Eudoxus bermukim dan berkarya. Ada yang menyimpulkan bahwa Menaechmus adalah pembimbing (tutor) dari Alexander Agung karena profesi sehari-harinya adalah sebagai kepala sekolah di Cnidus.
Menaechmus dikenal karena penemuannya tentang potongan-potongan kerucut dan dia pula yang pertama kali menunjukkan bahwa bentuk elips, parabola dan hiperbola diperoleh dengan memotong kerucut - sebagai sebuah ruang - tidak sejajar dengan dasar kerucut. Istilah parabola dan hiperbola tidak dikenal saat ini dan baru dinamai oleh Apollonius, meskipun ada bukti yang menyebutkan bahwa istilah parabola dan hiperbola usianya lebih tua dari Apollonius.

Potongan kerucut
Potongan-potongan kerucut penemuan Menaechmus ditemukan secara tidak sengaja ketika dia berusaha menyelesaikan problem dalam perbandingan (nisbah) antara dua garis lurus. Hasilnya adalah menyelesaikan problem duplikasi kubus dengan menggunakan potongan-potongan kerucut. Misal: diketahui garis lurus dengan ujung a dan b; kita ingin mencari perbandingan titik-titik x dan y yang terletak diantaranya:

a : x = x : y = y : b diperoleh a/x = y/b xy = ab

Perhatikan nilai x dan y ditemukan dari titik-titik potong parabola: x² = ay dan hiperbola tegak lurus xy = ab. Di sini tidak tampak upaya Menaechmus menyelesaikan problem, namun di sini ditampilkan pula istilah modern tentang bagaimana parabola dan hiperbola mampu menjadi solusi bagi problem matematika.

Perhatikanlah:
a/x = x/y x² = ay; dan x/y = y/b y² = bx

Dapat diketahui nilai x dan y adalah titik-titik potong dua parabola x² = ay dan y² = bx.
Sumbangsih
Penemuan tidak sengaja potongan-potongan kerucut dari Menaechmus kelak mendasari [Blaise] Pascal untuk menjabarkan lebih lanjut dengan bentuk-bentuk elips, parabola dan hiperbola. Penjabaran dan pengambaran bentuk geometri lewat persamaan adalah suatu hal baru. Titik-titik potong pada parabola dan hiperbola kelak “disederhanakan” oleh D
escartes.


sumber : http://www.mate-mati-kaku.com/matematikawan/menaechmus.html 

.

Eudoxus (408 – 355 SM)



Riwayat
Eudoxus adalah anak Arsghnes lahir di Cnidus, Asia kecil (sekarang Turki). Dia pergi ke Tarentum, Italia untuk belajar pada Archytas *. Archytas adalah salah seorang pengikut Pythagoras (pythagorean). Problem menggandakan kubus (problem klasik) yang “menyihir” Archytas juga menarik hati Eudoxus, selain mempelajari teori angka dan teori musik.
Bosan menetap di satu tempat, Eudoxus pergi ke Sisilia, dan belajar obat-obatan pada Philiston, sebelum menuju Athena bersama-sama dengan fisikawan masa itu, Theomedon. Selama 2 bulan di Athena, Eudoxus secara teratur mengikuti kuliah Plato dan filsuf-filsuf lain pada akademi Plato.
Tidak lama meninggalkan Athena, dia menghabiskan beberapa tahun di Mesir untuk belajar astronomi pada pendeta-pendeta Heliopolis. Tidak betah, dia pulang ke tanah kelahirannya, Cyzidus di bagian barat laut Asia kecil, selatan laut Maruma. Di sini dia mendirikan sekolah yang sangat terkenal dan mempunyai banyak pengikut. Tahun 368, Eudoxus berkunjung kembali ke Athena bersama beberapa pengikutnya.


Hubungan dengan Plato
Eudoxus adalah teman sekaligus murid Plato. Eudoxus memperluas jangkauan menghitung luas bentuk-bentuk geometri dengan menggunakan pertambahan angka-angka yang sangat kecil (infitesimal). Dia terlalu miskin untuk belajar di akademi Athena, sehingga di tinggal di Piraeus, dan setiap hari dia berangkat ke akademi Plato.** Meskipun Plato bukan seorang matematikawan, Plato mencoba menekuni matematika atas dorongan murid berbakatnya ini, Eudoxus.
Eudoxus menjelajah Mesir dan Yunani untuk belajar Geometri. Eudoxus menemukan “metode makin lama makin kecil”, untuk menghitung luas bentuk-bentuk geometri. Sebagai contoh, dia menghitung luas lingkaran dengan menjumlah luas segi empat-segi empat kecil, yang lebih mudah dihitung luasnya. Cara yang mirip juga digunakan Archimedes untuk menghitung besar ? (pi), namun dengan menggunakan seni enam bukan segi empat. Methode ini sekarang dipakai dalam integral kalkulus.

Teori Planet
Eudoxus juga menciptakan teori tentang planet, yang sangat terkenal dan diterbitkan dalam buku On Velocities yang sekarang tidak diketahui rimbanya. Barangkali pengaruh Pythagoras masih kental lewat gurunya, Archytas. Tidaklah mengherankan dia mengembangkan sistem yang didasarkan pada silinder mengikuti Pyhtagoras bahwa silender adalah bentuk paling sempurna. Banyak pemerhati percaya bahwa Plato mendapat inspirasi dari Eudoxus tentang gerakan planet.

* Archytas (428 – 347 SM) dari Tarentum adalah murid Philolaus yang menjadi pendukung filosofi Pythagoras bahwa matematika adalah jalan untuk memahami segala sesuatu.
** Ada dugaan Eudoxus dan Plato tidak cocok. Barangkali karena kemampuan analitis Eudoxus sebagai matematikawan lebih tinggi dari Plato. Tentang pemikiran keduanya tidak jelas, siapa memberi pengaruh kepada lainnya.

Sumbangsih
Eudoxus mengembangkan teori proporsi. Kelak, teori proporsi dari Eudoxus masuk pada bab V, buku Elements dari Euclid. Pada masa ini Eudoxus sudah membuat difinisi tentang prakiraan panjang suatu bilangan irrasional dengan methode perkalian silang (cross multiplying), dimana cara ini masih dipakai sampai sekarang.



sumber : http://www.mate-mati-kaku.com/matematikawan/eudoxus.html

Archytas (428 – 347 SM)



Setelah Pythagoras meninggal, tidak ada lagi peninggalan tersisa dalam bentuk karya-karya tertulis, namun ide-ide besar dibawa oleh para murid-muridnya. Mereka yang lolos dari pembantaian membawa doktrin-doktrin ajaran tersebut ke bagian wilayah lain Yunani. Salah seorang pengungsi ini adalah Philolaus dari Tarentum. Fanatisme para pengikut Pythagoras (Pythagorean) ditularkan oleh Philolaus lewat bentuk tetractyis (segi lima), sama seperti ajaran Pythagoras tentang kosmologi.

Gambar: segi lima

Pandangan ini disebut dengan Philolean, kemudian dimodifikasi oleh pengikutnya: Ecphantus dan Hicetas yang mencetuskan geosentris (pandangan bahwa bumi sebagai pusat alam semesta). Dan yang paling ekstrim dari modifikasi Philolean dilakukan oleh Archytas, murid Philolaus.
Archytas melanjutkan tradisi Pythagorean dengan menempatkan aritmatika di atas geometri, tetapi dia tidak lagi terlalu antusias terhadap angka. Angka tidak lagi dianggap religius dan mistikal dibandingkan dengan gurunya. Dia menulis aplikasi aritmatika, geometri dan musik. Pernyataan paling penting dari Archytas adalah nisbah dua bilangan n : (n+1), disebutkan bahwa hasilnya bukanlah integer tetapi titik geometri. Archytas lebih banyak berkutat di bidang musik dibandingkan dengan para pendahulunya.

Kurikulum Archytas
Archytas menempatkan posisi matematika sebagai kurikulum pendidikan dengan membagi menjadi 4 kelompok, yaitu:
- Aritmatika
- Geometri
- Musik
- Astronomi
Digabungkan dengan 3 obyek yang terus dipelajari dari Aristoteles hingga Zeno, yaitu:
- Tata bahasa
- Retorik (keahlian berpidato)
- Dialektik (terkait dengan dialek)

Tiga-dimensi versi Archytas
Hal lain tentang Archytas adalah memberikan solusi tiga-dimensi yang dalam bahasa modern disebut dengan geometri analitik, notasi akar yang digunakan untuk menuntaskan “keterbatasan” rumus Pythagoras. Solusi tiga-dimensi Archytas digunakan untuk menyelesaikan problem Delian yang barangkali mudah untuk diuraikan tetapi lebih sering disebut mendahului jamannya. Misal: a adalah sisi sebuah kubus, dan titik (a, 0, 0) adalah titik pusat bidang yang saling bersilangan secara tegak lurus dengan lingkaran berjari-jari a terletak didalamnya yang tegak lurus dengan koordinat. Persamaan dengan tiga sisi x² = y² + z² dan 2 ax = x² + y² dan (x² + y² + z²)² = 4a²(x² + y²). Ketiga bidang saling bersinggungan/berpotongan pada sumbu x pada titik a ³√12; merupakan, panjang potongan garis pada kubus. Prestasi Archytas lebih impresif saat kita melihat bahwa solusi yang diberikan tanpa menggunakan bantuan sistem koordinat.
Sumbangsih
Solusi tiga-dimensi dari Archytas mampu memberi gambaran awal tentang terjadinya sistem ordinat dan absis (Kartesian), meskipun di sini sudah membahas tiga-dimensi yang dapat dikatakan sebagai non-Euclidian. Pada masa Euclidian dianggap salah, namun dengan tampilnya non-Euclidian makin lengkaplah [peralatan] matematika agar mempunyai kemampuan menyelesaikan problem-problem yang dihadapi sehari-hari. Kelak sistem ini dikembangkan lebih jauh oleh Lobachevsky, Bolyai, Riemann dan menjadi dasar teori relativitas dari Einstein, karena ternyata Euclidian sudah tidak mampu lagi digunakan untuk menggambarkan fenomena yang terjadi. Memasukkan musik dalam kurikulum dapat disebut salah satu jasanya, sekaligus menjadi bukti bahwa musik tidak jauh berbeda dengan matematika.



sumber : http://www.mate-mati-kaku.com/matematikawan/archytas.html

.

Zeno ( 490 - 435 SM )


“Tujuan kehidupan adalah hidup selaras dengan alam”
(“The goal of life is living in agreement with nature.”)

Zeno
Matematikawan bengal pencipta banyak paradoks
Zeno
(490 – 435 SM)

Riwayat
Zeno dikenal banyak orang karena namanya tercantum pada halaman pertama buku Parmenides karangan Plato. Diperkirakan bahwa saat itu Zeno berumur 40 tahun, sedang Socrates masih remaja, kisaran usia 20 tahun. Dengan mengetahui bahwa Socrates lahir pada 469 SM, maka diperkirakan Zeno lahir pada tahun 490 SM. Disinyalir bahwa Zeno mempunyai hubungan “khusus” dengan Parmenides. Catatan Plato menyebutkan adanya gosip bahwa mereka saling jatuh cinta saat Zeno masih muda, dan tulisan Zeno tentang paradoks digunakan untuk melindungi filsafat Parmenides dari para pengkritiknya. Semua catatan itu tidak pernah ada dan cerita itu dituturkan oleh tangan kedua. Tulisan Aristoteles yang terdapat pada Simplicius - terbit ribuan tahun setelah Zeno - digunakan sebagai acuan.
Zeno dari Elea, lahir pada awal mulainya perang Persia – konflik antara Timur dan Barat. Yunani dapat menaklukkan Persia, tapi semua filsuf Yunani tidak pernah berhasil menaklukkan Zeno. Zeno mengemukakan 6 paradoks, teka-teki yang tidak dapat dipecahkan oleh logika filsuf terkemuka Yunani saat itu. Paradoks yang dilontarkan Zeno membingungkan semua filsuf Yunani, namun tidak seorang pun dapat menemukan kesalahan pada logika Zeno. Paradoks ini menjadi sangat termasyur karena terus “mengganggu” pemikiran para matematikawan; dan baru dapat dipecahkan hampir 2000 tahun kemudian. Dari enam paradoksnya, yang paling terkenal, adalah paradoks lomba lari Achilles dan kura-kura.

Latar belakang
Parmenides menolak faham pluralisme dan realitas dalam berbagai macam perubahan: baginya segala sesuatu tidak dapat dibagi, realitas tidak berubah, dan hal-hal yang tampak dan berbeda hanyalah ilusi belaka, sehingga dapat dibantah dengan argumen/alasan. Tidak perlu disangsikan lagi, faham ini mendapat banyak kritikan tajam.
Tanggapan terhadap kritik Zeno memicu sesuatu yang lebih nyata, namun mampu memberi dampak mendalam bagi filsafat Yunani bahkan sampai saat ini. Zeno berusaha menunjukkan bahwa suatu kemustahilan diikuti oleh logika dari pandangan Parmenides. Segala sesuatu dapat menjadi sangat kecil atau menjadi sangat besar. Paradoks ini sebagai bukti kontradiksi atau kemustahilan akibat asumsi-asumsi yang (tampak) masuk akal. Apabila dilihat lebih dalam maka paradoks mengarah kepada target spesifik yaitu menyangkut lebih atau kurang: pandangan orang atau aliran pemikiran tertentu. Zeno – lewat paradoks - berusaha menyatakan bahwa alam semesta ini tidak berubah dan tidak bergerak.
Mencoba menyingkap siapa yang menjadi target serangan Zeno relatif lebih mudah daripada mencoba memecahkan paradoksnya. Tahun kelahiran Zeno, menunjuk bahwa dunia remajanya dipenuhi dengan pandangan Pythagoras (580 – 475 SM) dan para pengikutnya (pythagorean). Tampaknya doktrin Pythagorean mau diserang Zeno, meskipun dugaan ini masih terlampau dini untuk disebut karena topik ini masih menjadi ajang perdebatan sampai sekarang.
Paradoks Zeno mengungkapkan problem-problem yang tidak dapat diselesaikan oleh semua teknik matematika yang tersedia pada saat itu. Penyelesaian paradoks Zeno baru dimulai pada abad 18 (atau lebih awal dari itu). Paradoks itu mampu merangsang otak-otak kreatif matematikawan dan memberi warna pada sejarah perkembangan matematika.

Matematikawan “hitam”
Zeno (490 – 435 SM) dari Alea dan Eudoxus (408 – 355 SM) dari Cnidus menghadirkan pertentangan dua kubu pemikiran matematika: penghancuran kritikal dan pengembangan kritikal. Pertentangan kedua pemikiran ini layak disebut dengan ajang pertempuran logika antara matematikawan “hitam” dan matematikawan “putih.”
Duel “aliran” tidak hanya terjadi pada jaman kuno, matematikawan modern juga mengekor atau menjadi pengikut salah satu idola mereka.
Penghancuran kritikal seperti pemikiran Zeno diteruskan oleh Kronecker (1823 – 1891) dan Brouwer (1881 - 1966), sedangkan pemikiran Eudoxus diteruskan oleh Weierstrass (1815 – 1897), Dedekind (1831 – 1916) dan Cantor (1845 – 1918).

Paradoks Zeno
Ada 4 paradoks Zeno yang terkenal, meskipun yang paling terkenal adalah paradoks kedua, perlombaan lari Archilles dan kura-kura.

1. Dikhotomi
Paradoks ini dikenal sebagai “dikhotomi” karena selalu terjadi pengulangan pembagian menjadi dua. Gerak adalah tidak dimungkinkan, sebab apapun yang terjadi gerak harus mencapai (titik) tengah terlebih dahulu sebelum mencapai (titik) akhir; tapi sebelum mencapai titik tengah terlebih dahulu mencapai seperempat dan seterusnya, suatu ketakterhinggaan. Jadi, gerak tidak akan pernah ada bahkan pada saat untuk memulainya.

2. Perlombaan lari Achilles dan kura-kura
Achilles - kesatria pada perang Troya, mitologi Yunani, berlomba lari dengan kura-kura, tetapi Achilles tidak dapat mengalahkan kura-kura yang berjalan lebih dahulu. Untuk memudahkan penjelasan, maka diberikan ilustrasi dengan menggunakan angka pada paradoks ini.
Bayangkan: Achilles berlari dengan kecepatan 1 meter per detik, sedangkan kura-kura selalu berjalan dengan kecepatan setengahnya, ½ meter per detik, namun kura-kura mengawali perlombaan dari ½ jarak yang akan ditempuh (misal: jarak tempuh perlombaan 2 km, maka titik awal/start kura-kura berada pada posisi 1 km, sedang Archilles pada titik 0 km). Kura-kura berjalan begitu Achilles mencapai tempatnya. Begitu Achilles mencapai posisi 1 km, kura-kura berada pada posisi 1,5 km; Achilles mencapai posisi 1,5 km, kura-kura mencapai posisi 1,75; Achilles mencapai posisi 1,75 km, kura-kura mencapai posisi 1,875 km. Pertanyaannya adalah kapan Achilles dapat menyusul kura-kura?.

3. Anak panah
Anak panah bergerak (karena dilepaskan dari busur) pada waktu tertentu, diam maupun tidak diam. Apabila waktu tidak dapat dibagi, panah tidak akan bergerak. Apabila waktu kemudian dibagi. Tetapi waktu juga tersusun dari setiap (satuan) saat. Jadi panah tidak dapat bergerak pada suatu saat tertentu, tidak dapat bergerak pula pada waktu. Oleh karena itu anak panah selalu diam.

4. Stadion
Paradoks tentang gerakan urutan orang duduk di dalam stadion. Urutan [AAAA] yang diam diperbandingkan dengan urutan bergerak pada tempat duduk stadion dari dua arah yang berlawanan, [BBBB]: urutan orang yang bergerak ke kiri dan [CCCC]: urutan orang duduk yang bergerak ke kanan.

Paradoks tentang stadion ini dapat digambarkan sbb.:
AAAA: urutan berhenti
BBBB: urutan bergerak ke kiri
CCCC: urutan bergerak ke kanan
Semuanya bergerak dengan kecepatan tetap/sama.

Posisi I                   Posisi II

A A A A                 A A A A
B B B B                 B B B B
C C C C                C C C C

Posisi I:
Urutan duduk AAAA, BBBB dan CCC terletak rapi, baris dan kolom sama. Gerakan dimulai, dengan kecepatan sama, urutan BBBB dan urutan CCCC bergerak. Urutan B paling kiri melewati 2 orang: C paling kiri dan A paling kiri. Jarak B paling kiri dengan C paling kiri adalah 2 kali jarak B paling kiri dengan A paling kiri, dengan waktu yang sama.
Zeno mempertanyakan mengapa dengan waktu yang sama dan kecepatan sama ada perbedaan jarak yang ditempuh?


Pemecahan modern
Semua orang tahu bahwa dalam dunia nyata, Achilles pasti dapat menyusul kura-kura, namun dari argumen Zeno, Achilles tidak akan pernah dapat menyusul kura-kura. Para filsuf jaman itu pun tidak mampu membuktikan paradoks tersebut, walaupun mereka tahu bahwa kesimpulan akhirnya adalah salah. “Senjata” filsuf hanya logika, dan deduksi tidaklah berguna dalam kasus ini. Semua langkah tampaknya masuk akal, dan jika semua prosedur sudah dijalani, bagaimana kesimpulan yang didapat ternyata salah?
Mereka terperangah dengan problem tersebut, tetapi tidak memahami akar permasalahan: ketakterhingga (infinite). Hal ini sama dapat terjadi apabila anda membagi sebuah mata uang menjadi 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 dan seterusnya sampai tidak terhingga tetapi hasilnya akhirnya jelas, yaitu: tetap 1 mata uang. Matematikawan modern menyebut fenomena ini dengan istilah limit; angka 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128 dan seterusnya mendekati angka 0 sebagai titik akhir (limit).
Angka berurutan dengan pola tertentu sampai tidak mempunyai batas akhir; mereka makin kecil dan bertambah kecil sampai tidak dapat dibedakan lagi. Orang Yunani tidak mampu menangani ketakterhinggaan. Mereka berpikir keras tentang konsep kosong (void) tetapi menolak (angka) 0 sebagai angka. Hal ini pula yang membuat mereka pernah dapat menemukan kalkulus.

Dua paradoks tambahan
Tidak puas dengan empat paradoks yang dilontarkan. Zeno menambahkan dua paradoks lain yang tidak kalah rumitnya.

5. Paradoks tentang tempat
Paradoks ini cukup singkat, sehingga Zeno sulit menjelaskannya. Secara garis besar dapat disederhanakan sbb.: keberadaan segala sesuatu benda (misal: batu) adalah suatu tempat tertentu (misal: meja), sedangkan tempat tertentu itupun (meja) memerlukan suatu tempat (misal: rumah) dan seterusnya sampai ketakterhinggaan.

6. Paradoks tentang bulir gandum
Apabila anda menjatuhkan sebuah karung berisi gandum yang belum dikupas kulitnya akan terdengar suara keras; tetapi suara itu adalah akibat gesekan bulir-bulir gandum dalam karung; akibatnya setiap bagian dari bulir-bulir gandum menimbulkan suara saat jatuh ke tanah. Kemudian pertimbangkanlah menjatuhkan setiap bagian dari bulir gandum itu; kita semua tahu bahwa tidak ada suara yang terdengar.


Zeno boleh mati, tetapi paradok tetap hidup
Karena kecerdikan sendiri, Zeno akhirnya menghadapi problem serius. Sekitar tahun 435 SM, dia bersekongkol untuk mengulingkan tirani Elea saat itu, Nearhus. Zeno membantu menyelundupkan senjata dan mendukung pemberontakan. Sialnya, Nearchus mengetahui skenario itu, dan Zeno akhirnya ditangkap. Berharap dapat mengungkap konspirasi itu, Zeno disiksa. Tidak tahan oleh siksaan, Zeno menyuruh para penyiksanya untuk menghentikan siksaan dan dia berjanji akan menyebutkan nama rekan-rekannya.
Ketika Nearchus mendekat, Zeno meminta agar tiran itu lebih mendekat lagi karena dia akan menyebutkan nama-nama komplotan rahasia itu langsung di telinga Nearchus. Setelah telinga ada dalam jangkauan, tiba-tiba Zeno menggigit telinga Nearchus. Nearchus menjerit-jerit kesakitan, namun Zeno menolak untuk melepaskan gigitannya. Para penyiksanya hanya dapat melepaskan gigitan Zeno dengan jalan menusuk mati Zeno. Ini adalah akhir hayat, pencipta paradoks atau guru ketakterhinggaan.


Sumbangsih
Jasa Zeno paling besar adalah pengaruhnya bagi filsafat. Sasaran ‘tembak’ Zeno adalah pluraliti dan gerak – sesuatu ditanamkan pada opini-opini geometrikal yang lazim dikenal – selain akal sehat, menyerang doktrin-doktrin Pythagorean, ternyata mampu memberi inspirasi para teori relativitas (paradoks keempat) dan fisika quantum. Kenyataannya ruang dan waktu bukanlah struktur matematika utuh (continuum). Alasan bahwa ada cara untuk melestarikan realitas gerak mengingkari bahwa ruang dan waktu terbentuk dari titik-titik dan saat-saat.
Paradoks ini sangat terkenal, terutama paradoks Archilles dan kura-kura, kelak dipecahkan oleh Cantor. Hampir seluruh buku matematika mencantumkan nama Zeno pada indeksnya. Paradoks tidak hanya merupakan pertanyaan terhadap matematika abstrak tetapi juga pada realitas fisik. Memperkecil skala seperti halnya paradoks bulir gandum, sampai tidak dapat dibagi memicu orang “membedah” suatu benda sampai tingkat atom.



sumber : http://www.mate-mati-kaku.com/matematikawan/zeno.html


Photobucket

Popular Posts